Refine Your Search

Topic

Author

Search Results

Technical Paper

Safety Element out of Context - A Practical Approach

2012-04-16
2012-01-0033
ISO 26262 is the actual standard for Functional Safety of automotive E/E (Electric/Electronic) systems. One of the challenges in the application of the standard is the distribution of safety related activities among the participants in the supply chain. In this paper, the concept of a Safety Element out of Context (SEooC) development will be analyzed showing its current problematic aspects and difficulties in implementing such an approach in a concrete typical automotive development flow with different participants (e.g. from OEM, tier 1 to semiconductor supplier) in the supply chain. The discussed aspects focus on the functional safety requirements of generic hardware and software development across the supply chain where the final integration of the developed element is not known at design time and therefore an assumption based mechanism shall be used.
Technical Paper

Timing Analysis and Tracing Concepts for ECU Development

2014-04-01
2014-01-0190
Integration scenarios for ECU software become more complicated, as more constraints with regards to timing, safety and security need to be considered. Multi-core microcontrollers offer even more hardware potential for integration scenarios. To tackle the complexity, more and more model based approaches are used. Understanding the interaction between the different software components, not only from a functional but also from a timing view, is a key success factor for high integration scenarios. In particular for multi-core systems, an amazing amount of timing data can be generated. Usually a multi-core system handles more software functionality than a single-core system. Furthermore, there may be timing interference on the multicore systems, due to the shared usage of buses, memory banks or other hardware resources.
Technical Paper

Motor Control in Auxiliary Drive Systems How to Choose the Best Fitting Electronic Solution

2014-04-01
2014-01-0323
In modern vehicles, the number of small electrical drive systems is still increasing continuously for blowers, fans and pumps as well as for window lifts, sunroofs and doors. Requirements and operating conditions for such systems varies, hence there are many different solutions available for controlling such motors. In most applications, simple, low-cost DC motors are used. For higher requirements regarding operating time and in stop-start capable systems, the focus turns to highly efficient and durable brushless DC motors with electronic commutation. This paper compares various electronic control concepts from a semiconductor vendor point of view. These concepts include discrete control using relays or MOSFETs. Furthermore integrated motor drivers are discussed, including system-on-chip solutions for specific applications, e.g. specific ICs for window lift motors with LIN interface.
Technical Paper

Efficient Multi-Core Software Design Space Exploration for Hybrid Control Unit Integration

2014-04-01
2014-01-0260
Multi-core systems are adopted quickly in the automotive domain, Proof of concepts have been implemented for power train, body and chassis, involving hard real-time constraints. However, depending on the degree of integration, it can be costly, especially in those cases where existing single-core software has to be migrated over. Furthermore, there seems to be a high level of uncertainty, whether a found solution, with regards to partitioning, mapping and orchestration of software is close to an optimum solution. Some integrated solutions demonstrate considerably less performance, for instance due to communication overhead compared to execution on single-core systems. This paper discusses a methodology, as to how to effectively and efficiently investigate the software architecture design space for multi-core software development.
Technical Paper

Hybrid Cars Setting New Challenges for Optimized Power Semiconductors

2014-04-01
2014-01-0242
The electrification of the powertrain is still one of the main challenges and innovation drivers for modern cars. With the introduction of the Toyota Prius, launched in Japan in 1997 the first commercially available hybrid car in mass production, the development continued towards the BMW i3 launched in July 2013. One main component for all kind of hybrid cars is still the power semiconductor, which is used for DC/DC converters and for the inverter to drive the electric motor for the traction control. What makes the selection of the right power semiconductor complex, is the variety of different voltage levels within the car (from standard 12V board net, the new 48V board net all the way up to 400V and above) plus different requirements in terms of switching and conduction performance, or accordingly power losses. The selection of device by application and voltage will be discussed in this paper.
Technical Paper

Spontaneous Transistor Failures in Automotive Power Electronics

2014-04-01
2014-01-0228
The amount of electronics in vehicles is increasing, so is the amount of power electronics circuits, like inverters for electric motor drives or dc/dc converters. The muscles of these circuits are power transistors like MOSFETs and IGBTs - in each circuit are several of them. While MOSFETs and IGBTs have advanced over the years in terms of their performance, their wide product spectrum and feature spectrum as well as cost, they are still not unbreakable, but semiconductors which are more sensitive to electrical or thermal overstress than, a relay for instance. Especially electrical overstress, like overvoltage or over current, may damage a power transistor within a short time frame. Hence, electrical overstress must be avoided when designing the power electronics circuit. However, even a power transistor in a carefully designed power electronics circuit, may still be exposed to over current, short circuit, over voltage, over temperature and so forth.
Technical Paper

Efficient Virtualization for Functional Integration on Modern Microcontrollers in Safety-Relevant Domains

2014-04-01
2014-01-0206
The infrastructure in modern cars is a heterogeneous and historically grown network of different field buses coupling different electronic control units (ECUs) from different sources. In the past years, the amount of ECUs in the network has rapidly grown due to the mushrooming of new functions which historically were mostly implemented on a one-ECU-per-function basis resulting in up to a hundred ECUs in fully equipped luxury cars. Additionally, new functions like parking assist systems or advanced chassis control functions are getting increasingly complex and require more computing power. These two facts add up to a complex challenge in development. The current trend to host several functions in single ECUs as integration platforms is one attempt to address this challenge. This trend is supported by the increased computing power of current and upcoming multi-core microcontrollers.
Technical Paper

Cost Efficient Partitioning for New Generation of Automatic Transmission Gearbox Controllers

2006-04-03
2006-01-0403
This paper shall present advancements in electronic transmission control circuits addressing new challenges in the gearbox striving for improved vehicle efficiency and comfort of driving. Efficient chipset design, requires finding the optimal partitioning, that is the mapping of functionality to hardware or software and analog or digital circuit technology. The efficiency will be judged by minimal cost whilst achieving improved functionality and required scalability for a platform approach. Specific examples demonstrated are smart sensor architecture and new mapping of control strategies, realized with a novice integrated current control IC concept. Comparisons on system level are used to evaluate different function mappings as well as component partitioning. Details of the most optimized mapping and partitioning will be elaborated and first results of implementation in silicon components will be shown.
Technical Paper

Extended Qualification of Power MOSFET to Fulfill Today's Requirements of Automotive Applications

2006-04-03
2006-01-0592
This paper focuses on the requirements of electronic systems in automotive applications in terms of reliability and quality. As one of the most common devices in such applications for switching electronic loads, the power MOSFET, is investigated in detail. Today's qualification procedure for discrete devices according to AEC Q101 [1] will be explained and how this correlates to the stress of the device in the application. It will be pointed out what additional tests for “extended qualification” should be made to deal with critical failure modes reducing overly conservative safety margins and preventing excessive costs on the component side. The tests will be explained and the results presented.
Technical Paper

Seamless Solution for Electronic Power Steering

2006-04-03
2006-01-0593
The number of safety critical automotive applications employing high current brushless motors continues to increase (Steering, Braking, and Transmission etc.). There are many benefits when moving from traditional solutions to electrically actuated solutions. Some of these benefits can include increased fuel economy, simplified vehicle installation and packaging, increased feature set, improved safety and/or convenience, simplified unit assembly and modular testability prior as well as during vehicle manufacturing. The trend to implement brushless motors in these applications (which require electronically controlled commutation) has also brought with it the need for powerful inverters, which primarily consist of Power MOSFETs and MOSFET Driver ICs. This paper reviews the challenges associated with the design of safety critical electronic systems which combine sensing, control and actuation.
Technical Paper

Virtual Prototypes as Part of the Design Flow of Highly Complex ECUs

2005-04-11
2005-01-1342
Automotive powertrain and safety systems under design today are highly complex, incorporating more than one CPU core, running with more than 100 MHz and consisting of several 10 million transistors. Software complexity increases similarly making new methodologies and tools mandatory to manage the overall system. The use of accurate virtual prototypes improves the quality of systems with respect to system architecture design and software development. This approach is demonstrated with the example of the PCP/GPTA subsystem for Infineon's AUDO-NG powertrain controllers.
Technical Paper

Design Process Changes Enabling Rapid Development

2004-10-18
2004-21-0085
This paper will address the electronic development in the wireless industry and compare it to the electronic development in the automotive industry. The wireless industry is characterized by rapid, dramatic high tech changes with a less than two-year cycle time and an equivalent life cycle. The automotive electronics industry is working toward reducing the typical 2 to 3 year development cycle down 1 to 2 years but with a life cycle of 10 years or more. In addition to realizing the electronic development benefits seen in the wireless industry, the automotive industry places significantly more emphasis on the quality and reliability aspects of their designs as many of them are targeted toward, or interface with, safety critical applications. One of the lessons learned from the wireless industry is the development process; where the hardware selection process can be accomplished in a virtual environment in conjunction with concurrent software development.
Technical Paper

Microsecond Bus (μSB): The New Open-Market Peripheral Serial Communication Standard

2005-04-11
2005-01-0057
For the past approximately 20 years, the Serial Peripheral Interface (SPI) has been the established standard for serial communication between a host or central microprocessor and peripheral devices. This standard has been used extensively in control modules covering the entire spectrum of automotive applications, as well as non-automotive applications. As the complexity of engine control modules grows, with the number of vehicle actuators being controlled and monitored increasing, the number of loads the central microprocessor has to manage is growing accordingly. These loads are typically controlled using discrete and pulse-width modulated (PWM) outputs from the microcontroller when real-time operation is essential or via SPI when real-time response is not critical. The increase of already high pin-count on microcontrollers, the associated routing effort and demand for connected power stages is a concern of cost and reliability for future ECU designs.
Technical Paper

Sensor Signal Delivery

2005-04-11
2005-01-0043
The signal delivery and quality of sensor data is of growing importance for modern automotive control applications. Sensors tend to be calibrated subsystems that are designed to stay in a defined tolerance and thus can easily be modeled. Compared to this deterministic behavior the transmission channel is time variant due to EMC and aging of contacts for example. The use of analog signaling, which is the actual state of realization in many cases, is sensitive to the time variant effects mentioned before. This time variance is hard to consider for the control system development. In this paper we will analyze the role of the sensor in the signal supply chain and discuss approaches for digital sensor-ECU communication and their potential to establish a link, which allows neglecting low level effects of the channel.
Technical Paper

Giant Magneto Resistors - Sensor Technology and Automotive Applications

2005-04-11
2005-01-0462
The paper will give an introduction to the principle of the giant magneto resistive - GMR - effect and the silicon system integration of GMR sensors. The two main applications of a GMR as a magnetic field strength sensor and as an angular field direction sensor will be discussed under consideration of automotive requirements. The typical applications of a magnetic field strength GMR sensor in incremental position and speed sensing and those of GMR angular field sensors in position sensing will be summarized. Finally advantages of GMR in those applications will be discussed and conclusions on the use of GMR in automotive sensing will be drawn.
Technical Paper

Single-Edge Nibble Transmission: Challenges and Evolutions

2009-04-20
2009-01-0125
Single Edge Nibble Transmission (SENT) is a promising low-cost solution for communication between off-ECU sensors and a microcontroller. First, this paper analyses the advantages of digital sensors with a special focus on position sensors. The possible integration of SENT in other application fields (such as pressure sensors) is also discussed. Secondly, it describes possible solutions for handling SENT communication on microcontrollers and it gives practical examples based on Infineon's TriCore and XC2000 families. It discusses the constraints and limitations on software level and how they could be solved by dedicated hardware implementations. Finally, this paper presents the Short PWM Code (SPC) protocol, which is a further extension of the SENT protocol. SPC aims at increasing the performance of the communication link and reducing system costs at the same time. By allowing bidirectional communication, SPC opens the way to new system relevant functionalities.
Technical Paper

Challenges with the Introduction of X-By-Wire Technologies to Passenger Vehicles and Light Trucks in regards to Functional Safety, Cybersecurity and Availability

2023-04-11
2023-01-0581
Classic vehicle production had limitations in bringing the driving commands to the actuators for vehicle motion (engine, steering and braking). Steering columns, hydraulic tubes or steel cables needed to be placed between the driver and actuator. Change began with the introduction of e-gas systems. Mechanical cables were replaced by thin, electric signal wires. The technical solutions and legal standardizations for addressing the steering and braking systems, were not defined at this time. Today, OEMs are starting E/E-Architecture transformations for manifold reasons and now have the chance to remove the long hydraulic tubes for braking and the solid metal columns used for steering. X-by-wire is the way forward and allows for higher Autonomous Driving (AD) levels for automated driving vehicles. This offers new opportunities to design the vehicle in-cabin space. This paper will start with the introduction of x-by-wire technologies.
Technical Paper

MultiCore Benefits & Challenges for Automotive Applications

2008-04-14
2008-01-0989
This paper will give an overview of multicore in automotive applications, covering the trends, benefits, challenges, and implementation scenarios. The automotive silicon industry has been building multicore and multiprocessor systems for a long time. The reasons for this choice have been: increased performance, safety redundancy, increased I/O & peripheral, access to multiple architectures (performance type e.g. DSP) and technologies. In the past, multiprocessors have been mainly considered as multi-die, multi-package with simple interconnection such as serial or parallel busses with possible shared memories. The new challenge is to implement a multicore, micro-processor that combines two or more independent processors into a single package, often a single integrated circuit (IC). The multicores allow a computing device to exhibit some form of thread-level parallelism (TLP).
Technical Paper

Smart Power Supply Concept for 32-Bit Microcontroller Applications

2000-03-06
2000-01-1242
The increasing complexity of automotive electronic systems can only be managed by a higher integration of the modules and a high reliability of the individual electronic devices. That means, the number of electronic components on board will decrease and their complexity will increase. This paper describes how to meet the requirements for the power supply of a 32-bit microcontroller based system in an automotive environment.
Technical Paper

AUDO Architecture A Solution to Automotive Micro-Controller Requirements

2000-03-06
2000-01-0145
The C166 family, based on a 16-bit core; it is nowadays an enormous success in automotive, in particular in PowerTrain. This component is the right answer for the automotive real time applications of today. It is with both, automotive customer requirements and a long automotive experience in semi-conductors that this new generation 32-bit family is borne. The objective of this document is to provide and comment on automotive requirements in terms of the new micro-controller, to show the benefits for the applications and explain how the AUDO architecture fulfils these requirements.
X